Bamboo in European construction industry
The foundation of CRU! Architects in Belgium started with

Bamboostic

A collaboration between PUC-Rio University (professor K. Ghavami) and VZW Bamboostic
Bamboostic project
Generating an economy through building with bamboo

- Formation of a cooperative in bamboo building
- Workers are paid to make community buildings (rotation system)
- First constructions; community or tourism buildings (also creating income through tourism)
- Later on private buildings in bamboo (hotels the in the neighborhood)
Realised Projects

the first construction = bridgemaking to community
Several smaller tourism buildings

Handicraft store
Problem = tatched roof + overhang
Tourist information stand – entrance of Camburi
Community Centre with class rooms, library, venue, kitchen and toilets
Design of the community building:

- Protection of bamboo against sun and rain:
 - roof overhang
 - 50 cm above ground level – stone basis
- Ventilation; danger of wind shadows; axis towards main wind
- Comprehensible design + easy to duplicate
- Importance of good examples for acceptance
Used techniques; bamboo, taipa, adobe bricks, river stones, green roof, plastic bottle walls, etc
Drying bamboo: construction and shade
Treatment through immersion
Training of jointing techniques (fish mouth)
Compressed earth blocks

Rammed earth walls
CRU! Architects
Ghent - Belgium
2006 Back in Belgium

- Clean globalized => not related to local identity-architecture
- Energy = ecology?
- Is passive dangerous and a-social? New building > 30km from work?
- Conventional materials and technologies; contributing to energy saving and ecology in the 21st Century?
Why isn´t bamboo used in Europe

• Lack of knowledge, trust and good examples
 image of poor man´s timber – technical solutions not very known
• Lack of good construction codes
 Since 2003 international iso-norms for mecanical properties – Jules Jansen, K. Ghavami ea collaboration Kaho St Lieven
• Lack of dimensional stability – variable material
 Requires originality of the designer, letting go of fixed design
 methods and knowledge of common connection techniques
Why using bamboo in Europe

- Moso is already imported for decades (decoration etc) and available
- Question of transport; compare it to its ecological equivalent
 - most wood is Canadian or Scandinavian (Oregon or Douglas) which is equally as far but to the north – most building materials are imported
 - a tree grows in 30 years versus bamboo in 4 to 7 years
- Energy spend to produce 1 m³/Mpa of bamboo is 50x less than that of steel (K.Ghavami)!
- Tensile strength (N/mm²); of bamboo almost equal to that of steel!
- In the production of 1 ton steel 2 ton CO² is produced; bamboo absorbs CO²
- No natural enemies in Europe; no powderpost beetle-less funghi

<table>
<thead>
<tr>
<th>Material</th>
<th>MJ/m³ per 1MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>1500</td>
</tr>
<tr>
<td>Concrete</td>
<td>240</td>
</tr>
<tr>
<td>Wood</td>
<td>80</td>
</tr>
<tr>
<td>Bamboo</td>
<td>30</td>
</tr>
</tbody>
</table>

50 Times
How to apply bamboo in Europe

• Safety! no lashings but use high tec techniques (steel+concrete)
• Make a variable material straight – longeron, ridge and wall plate
• Give attention for dry air (at least 40% humidity in the air- winter!)
• Calculation now is possible

• Prefabricate; use rafters like iron or wood, use scaffolding
• Make a logical and copyable design – no hippie architecture
• Don´t mention it to your city service urban planning
Various connection techniques

- Lashing or bamboo pins are dangerous when not perfectly executed, not secure enough for European context
- Fish mouth technique; requires a perfect ‘mouth` = labour intensive
- Multiple bamboo connected to each other by the merho-node = expensive method but good
• The used technique was developed in Colombia by Hidalgo en Velez;
• The ends with metal couplers, concrete or plastic bottles.
• Cross connections with wire rods; size M12
• Protection against lateral forces when bolting through concrete in 1 compartment (<=2 dcl)
Eliminate variability of bamboo through metal ridge and longeron
Prefabrication; make the design copyable and prefabricate as much as possible on the floor + fill up connections with concrete
• Cross connect bamboos
• Put three bamboos on top (can’t weaken the bamboo with too many connections coming on to one single bamboo – therefore three bamboos
Sandwich panels with isolation (= standard material + easy for finishing off rest of the roof construction). Variability is gone.
Another roof construction...
Same method...
Scaffolding and temporary support
The result!
Improvements?

Evaluation and optimalisation of bamboo roof construction
Thesis by Sander Cordeel
2009 – 2010
Kaho St Lieven in Ghent

Permanent loads

Wind loads
Conclusions

- The load the bamboo can bear = 6x higher
- Improvements could be made in the design
 - fixation of the connection with metal foot and bamboo end is too rigid: a hinge would resolve the moment
 - chance of buckling of bamboo was high, therefore a secondary bamboo was foreseen -> different design could solve this as well
- Put span tapes or polymers were bamboo cracked
Collaboration with academical world

* PUC- Rio; professor Ghavami – first and longest collaboration
* Kaho ST. Lieven – afd; bouwkundig ingenieur; 4 thesissen (last=CRU! roof)
* Kaho ST. Lieven – 2012 – 2 thesis; on LCA, codes en norms + calculation
* RUG burg. Ing. Architect; 1 thesis treehut
* VUB burg. Ing. Architect; 1 thesis Britt Christiaens; opvolging Bamboostic
* Artesis Antwerpen afd. Bouwkundig ingenieur; 1 thesis bamboe in noodh.
* Universiteit Antwerpen – Johan Gielis
* St Lucas Brussel architecture – exchange to Brasil Kaat Vandevelde
* Howest Kortrijk industrial design – exchange to Brasil Benoit Verbeke