Considerations for a more responsible dissemination of alien bamboos

Susan Canavan1,2

Prof. John R. Wilson1,2
Prof. David M. Richardson2

1Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa

2Invasive Species Program, South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
Biological invasions: South Africa
Biological invasions

Invasive plants (Richardson *et al.*, 2011):

“Naturalized plants that produce reproductive offspring, often in very large numbers, at considerable distances from parent plants and thus have the potential to spread over a considerable area.”

- Biological invasions widely heralded as the second greatest agent of species endangerment and extinction (Pejchar *et al.*, 2009)
- Invasions are typically the intended or unintended consequence of economic activity (Perrings 2001)
Ecology and Evolution

Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: pattern of expansion and impact on species diversity

Gaku Kudo¹, Yukihiro Amagai¹⁻², Buho Hoshino² & Masami Kaneko²

Pinus pumila

Dwarf bamboo

Snow meadow
SPECIAL ISSUE

Impacts of moso bamboo (*Phyllostachys pubescens*) invasion on dry matter and carbon and nitrogen stocks in a broad-leaved secondary forest located in Kyoto, western Japan

KEITARO FUKUSHIMA, Nobuaki USUI, Ryo OGAWA and Naoko Tokuchi*

*Field Science Education and Research Center, and +Graduate School of Agriculture, Kyoto University, Kyoto, Japan

![Graph](image)

Fig. 5 (a) Ratios of non-photosynthetic organ to photosynthetic organ dry weights (*C/F*); (b) ratios of aerial organ to root dry weights (*T/R*) for whole plants, broad-leaved trees, and *P. pubescens*. □, SF; ■, MF1; □, MF2; ■, BF.
Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: leaf fall, aquatic leaf decay and patterns of invasion

PAUL J. O’CONNOR*, ALAN P. COVICH*, F. N. SCATENA† and LLOYD L. LOOPE‡

Ecological studies on bamboo expansion: process, consequence and mechanism

YANG Qing-Pei, YANG Guang-Yao*, SONG Qing-Ni, SHI Jian-Min, OUYANG Ming, QI Hong-Yan, and FANG Xiang-Min
The global dissemination of bamboo
The global dissemination of bamboo: Phylogenetic signal?
The global dissemination of bamboo: Who’s winning the popularity contest?
The global dissemination of bamboo: Who’s winning the popularity contest?

<table>
<thead>
<tr>
<th></th>
<th>Cultivars (%)</th>
<th>Varieties (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not introduced</td>
<td>13 (9%)</td>
<td>30 (41.7%)</td>
</tr>
<tr>
<td>(n=1437)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduced</td>
<td>131 (90.9%)</td>
<td>42 (58.4%)</td>
</tr>
<tr>
<td>(n=223)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive</td>
<td>70 (48.6%)</td>
<td>5 (6.9%)</td>
</tr>
<tr>
<td>(n=13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All species</td>
<td>144</td>
<td>72</td>
</tr>
<tr>
<td>(n=1673)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges and trade-offs in the management of invasive alien trees

Brian W. van Wilgen · David M. Richardson

<table>
<thead>
<tr>
<th>Benefits associated with tree species</th>
<th>Impacts associated with tree species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Destructive weeds</td>
<td>Conflict-generating species</td>
</tr>
<tr>
<td>Inconsequential species</td>
<td>Beneficial species</td>
</tr>
</tbody>
</table>
Biological invasions & industry

Challenges and trade-offs in the management of invasive alien trees

Brian W. van Wilgen · David M. Richardson

A

\[\text{Acacia species} \]

\[\begin{align*}
\text{Introduction} & \rightarrow \text{Net profit grows} \\
\text{Significant spread from planted areas begins} & \\
\text{Negative impacts exceed positive benefits} & \\
\text{Introduction of biological control} & \rightarrow \\
\text{Combined mechanical clearing} & \rightarrow \\
\text{?} & \\
\end{align*} \]

\begin{align*}
1860 & \rightarrow \text{Date} & 2010 \\
\end{align*}

B

\[\text{Prosopis species} \]

\[\begin{align*}
\text{Introduction} & \rightarrow \\
\text{Widespread hybridization} & \rightarrow \text{Options for biological control} \\
\text{Significant spread and demobilisation from planted areas begin} & \\
\text{Negative impacts predicted to exceed positive benefits} & \rightarrow \\
\end{align*} \]

\begin{align*}
1860 & \rightarrow \text{Date} & 2010 \\
\end{align*}

C

\[\text{Pinus species} \]

\[\begin{align*}
\text{Establishment of plantations brings value} & \rightarrow \text{Value of benefits exceeds negative impacts of limited invasion in summer-rainfall areas} & \rightarrow \\
\text{Cost of invasions exceeds value of plantation benefits in frosty uplands} & \rightarrow \\
\text{?} & \\
\end{align*} \]

\begin{align*}
1860 & \rightarrow \text{Date} & 2010 \\
\end{align*}

D

\[\text{Eucalyptus species} \]

\[\begin{align*}
\text{Establishment of plantations brings value} & \rightarrow \text{Value of benefits exceeds limited negative impacts for most species} & \rightarrow \\
\text{Aggressive invasion of riparian areas by E. camaldulensis} & \\
\text{Substantial impacts associated with E. camaldulensis masses for exceed limited benefits} & \\
\end{align*} \]

\begin{align*}
1860 & \rightarrow \text{Date} & 2010 \\
\end{align*}
Alien Bamboos: a threat or opportunity?
If you are interested in this research, have some input, comments please get in contact!

Thank you all

Susan Canavan
scanavan@sun.ac.za
References

